cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370672 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board using knight moves.

Original entry on oeis.org

1, 0, 10, 28, 0, 88, 130, 0, 238, 304, 0, 460, 250, 0, 754, 868, 0, 280, 1258, 0, 1558, 1720, 0, 2068, 1372, 0, 2650, 880, 0, 3304, 3538, 0, 1300, 4288, 0, 4828, 5110, 0, 2464, 6004, 0, 6640, 2380, 0, 7654, 3640, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Feb 25 2024

Keywords

Comments

All solutions of this type can be found using a knight moving with some displacements dx and dy starting from some cell with coordinates (x,y): (x,y) -> (x+dx,y+dy) -> (x+2*dx,y+2*dy) -> ... -> (x,y) (all operations modulo n). For n <= 11 all solutions of n nonattacking queens on n X n a toroidal board problem are solutions of this type, for n >= 13 some solutions are not of this type (see A051906 for examples).

Examples

			For n=2*2+1=5 there are 10 solutions:
.
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
.
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
.
so a(2)=10.
		

Crossrefs

Formula

a(n) = A123565(2*n+1) * (2*n+1).
a(n) = A338562(n) / (2n)!. - Eduard I. Vatutin, Mar 13 2024