A370672 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board using knight moves.
1, 0, 10, 28, 0, 88, 130, 0, 238, 304, 0, 460, 250, 0, 754, 868, 0, 280, 1258, 0, 1558, 1720, 0, 2068, 1372, 0, 2650, 880, 0, 3304, 3538, 0, 1300, 4288, 0, 4828, 5110, 0, 2464, 6004, 0, 6640, 2380, 0, 7654, 3640, 0
Offset: 0
Keywords
Examples
For n=2*2+1=5 there are 10 solutions: . +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . | | . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . | | . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . | | . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ . +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q | | . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . | | . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . | | Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ . so a(2)=10.
Links
- Eduard I. Vatutin, Arranging of N queens on toroidal board and generating pandiagonal Latin squares using them (in Russian).
- Eduard I. Vatutin, Numerical formula between number of cyclic diagonal Latin squares and number of toroidal n-queens problem solutions getting by knight movement (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A123565(2*n+1) * (2*n+1).
a(n) = A338562(n) / (2n)!. - Eduard I. Vatutin, Mar 13 2024
Comments