A370676 Number of unordered pairs of natural numbers k1, k2 such that their product is an n-digit number and has the same multiset of digits as in both k1 and k2.
0, 0, 3, 15, 98, 596, 3626, 22704, 146834, 983476, 6846451, 49364315, 367660050
Offset: 1
Examples
For n=3 the a(3)=3 solutions are: 3 * 51 = 153 6 * 21 = 126 8 * 86 = 688 For n=4 the a(4)=15 solutions are: 3 * 501 = 1503 3 * 510 = 1530 5 * 251 = 1255 6 * 201 = 1206 6 * 210 = 1260 8 * 473 = 3784 8 * 860 = 6880 9 * 351 = 3159 15 * 93 = 1395 21 * 60 = 1260 21 * 87 = 1827 27 * 81 = 2187 30 * 51 = 1530 35 * 41 = 1435 80 * 86 = 6880
Programs
-
Python
def a(n): count = 0 for i in range(1, 10**(n-1)): for j in range(i, 10**n//i+1): if len(str(i*j)) == n and sorted(str(i)+str(j)) == sorted(str(i*j)): count += 1 print(n, count)
Extensions
a(9)-a(10) from Michael S. Branicky, Feb 26 2024
a(11) from Chai Wah Wu, Feb 27 2024
a(12)-a(13) from Martin Ehrenstein, Mar 02 2024
Comments