A370692 Square array read by upward antidiagonals: T(n, k) = numerator( 2*k!*(-2)^k*Sum_{m=1..n}( 1/(2*m-1)^(k+1) ) ).
0, 2, 0, 8, -4, 0, 46, -40, 16, 0, 352, -1036, 448, -96, 0, 1126, -51664, 56432, -2624, 768, 0, 13016, -469876, 19410176, -1642592, 62464, -7680, 0, 176138, -57251896, 524760752, -3945483392, 195262208, -1868800, 92160, 0, 176138, -57251896, 524760752, -3945483392, 195262208, -1868800, 92160
Offset: 0
Examples
array begins: 0, 0, 0, 0, 0 2, -4, 16, -96, 768 8, -40, 448, -2624, 62464 46, -1036, 56432, -1642592, 195262208 352, -51664, 19410176, -3945483392, 3281966329856 1126, -469876, 524760752, -319632174752, 797531263755008 13016, -57251896, 698956654912, -4680049729764032, 128444001508242193408
Crossrefs
Programs
-
Maple
A := (n, k) -> Psi(k, n + 1/2) - Psi(k, 1/2): seq(lprint(seq(numer(A(n, k)), k = 0..4)), n=0..6); # Peter Luschny, Apr 22 2024
-
PARI
T(n, k) = numerator(sum(m=1, n, 1/(2*m-1)^(k+1))*k!*(-2)^k*2)