A372761 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+4))))).
11, 4, 7, 13, 31, 1, 41, 23, 17, 1, 61, 1, 71, 19, 1, 43, 1, 1, 101, 53, 37, 29, 1, 1, 131, 1, 47, 73, 151, 1, 1, 83, 1, 1, 181, 1, 191, 1, 67, 103, 211, 1, 1, 113, 1, 59, 241, 1, 251, 1, 1, 1, 271, 1, 281, 1, 97, 1, 1, 1, 311, 79, 107, 163, 331, 1, 1, 173, 1
Offset: 3
Keywords
Examples
For n=3, 1/(2 - 3/(3 + 4)) = 7/11, so a(3)=11. For n=4, 1/(2 - 3/(3 - 4/(4 + 4))) = 5/4, so a(4)=4. For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(5 + 4)))) = 19/7, so a(5)=7. For n=6, 1/(2 - 3/(3 - 4/(4 - 5/(5 - 6/(6 + 4))))) = 101/13, so a(6)=13.
Links
- Mohammed Bouras, The Distribution Of Prime Numbers And Continued Fractions, (ppt) (2022).
Comments