A370803 Number of integer partitions of n such that more than one set can be obtained by choosing a different divisor of each part.
0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 10, 11, 15, 18, 25, 28, 39, 45, 59, 66, 83, 101, 123, 150, 176, 213, 252, 301, 352, 426, 497, 589, 684, 802, 939, 1095, 1270, 1480, 1718, 1985, 2289, 2645, 3056, 3489, 4019, 4590, 5289, 6014, 6877, 7817, 8955, 10134, 11551, 13085
Offset: 0
Keywords
Examples
The partition (6,4,4,1) has two choices, namely {1,2,4,6} and {1,2,3,4}, so is counted under a(15). The a(0) = 0 through a(13) = 18 partitions (A..D = 10..13): . . 2 3 4 5 6 7 8 9 A B C D 32 42 43 44 54 64 65 66 76 41 52 53 63 73 74 75 85 61 62 72 82 83 84 94 431 81 91 92 93 A3 432 433 A1 A2 B2 621 532 443 543 C1 541 542 633 544 622 632 642 643 631 641 651 652 821 732 661 741 742 822 832 831 841 921 922 A21 5431 6421
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]>1&]],{n,0,30}]
Formula
Extensions
More terms from Jinyuan Wang, Feb 14 2025