A370816 Greatest number of multisets that can be obtained by choosing a divisor of each factor in an integer factorization of n into unordered factors > 1.
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 7, 2, 4, 4, 7, 2, 7, 2, 7, 4, 4, 2, 11, 3, 4, 5, 7, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 11, 2, 8, 2, 7, 7, 4, 2, 17, 3, 7, 4, 7, 2, 11, 4, 11, 4, 4, 2, 15, 2, 4, 7, 14, 4, 8, 2, 7, 4, 8, 2, 20, 2, 4, 7, 7, 4, 8, 2, 17, 7, 4, 2
Offset: 1
Keywords
Examples
For the factorizations of 12 we have the following choices: (2*2*3): {{1,1,1},{1,1,2},{1,1,3},{1,2,2},{1,2,3},{2,2,3}} (2*6): {{1,1},{1,2},{1,3},{1,6},{2,2},{2,3},{2,6}} (3*4): {{1,1},{1,2},{1,3},{1,4},{2,3},{3,4}} (12): {{1},{2},{3},{4},{6},{12}} So a(12) = 7.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Max[Length[Union[Sort/@Tuples[Divisors/@#]]]&/@facs[n]],{n,100}]