A370823 a(n) is the numerator of the ratio of winning probabilities P_A/P_B of winning in a 2-player game with a ratio of odds for A and B in a single round of 2:1. To win the game it is necessary to win n rounds in a row.
2, 16, 104, 128, 3872, 3328, 139904, 167936, 5038592, 2748416, 7886848, 2392064, 6530342912, 39182073856, 235092475904, 16594763776, 8463329656832, 381804347392, 304679869743104, 6647560798208, 10968475319140352, 2861341387784192, 8401385351544832, 5207012459675648
Offset: 1
Examples
a(n)/A370824(n) for n = 1..11: 2/1, 16/5, 104/19, 128/13, 3872/211, 3328/95, 139904/2059, 167936/1261, 5038592/19171, 2748416/5275, 7886848/7613.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- IBM Research, A Dice Game, Ponder This Challenge, February 2024.
Crossrefs
A370824 are the corresponding denominators.
Programs
-
Mathematica
Array[Numerator[(3^#-1)/((3/2)^#-1)/2] &, 35] (* Paolo Xausa, Mar 13 2024 *)
-
PARI
a370823_4(n, A=2/3, B=1/3) = my (an=A^n, bn=B^n); (1-A) * an * (1-bn) / ((1-B) * bn * (1-an)); \\ or by determination of the eigenvalues of the Markov matrix a370823_4(n, na=2, nb=1) = { if (n==1, na/nb, my (ntot=na+nb, A=na/ntot, B=nb/ntot, M=matrix(2*n+1)); M[1,2]=A; M[1,3]=B; for (rp=1, n-1, my (rb=2*rp+1, ra=rb-1); M[ra,3]=B; M[rb,2]=A; M[ra,ra+2]=A; M[rb,rb+2]=B); M[2*n,2*n]=M[2*n+1,2*n+1]=1; my (ME=mateigen(M)); ME[1,2]/ME[1,3])}; numerator(a370823_4(n))
-
Python
from math import gcd def A370823(n): return (a:=3**n-1<
Chai Wah Wu, Mar 07 2024
Formula
See the solution page of the "Ponder This" challenge for the formula derived from the Markov matrix representing the rules of the game.
Numerator of 2^(n-1)*(3^n-1)/(3^n-2^n). - Chai Wah Wu, Mar 07 2024
Comments