A370824 a(n) are the denominators corresponding to A370823(n).
1, 5, 19, 13, 211, 95, 2059, 1261, 19171, 5275, 7613, 1159, 1586131, 4766585, 14316139, 505661, 129009091, 2910965, 1161737179, 12675403, 10458256051, 1364211535, 2002867877, 620687383, 847255055011, 2541798719465, 7625463267259, 157769131169, 68629840493971, 86254737475
Offset: 1
Examples
A370823(n)/a(n) for n = 1..11: 2/1, 16/5, 104/19, 128/13, 3872/211, 3328/95, 139904/2059, 167936/1261, 5038592/19171, 2748416/5275, 7886848/7613.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
Crossrefs
A370823 are the corresponding numerators.
Programs
-
Mathematica
Array[Denominator[(3^#-1)/((3/2)^#-1)/2] &, 35] (* Paolo Xausa, Mar 13 2024 *)
-
PARI
\\ See A370823 for functions a370823_4(n) denominator(a370823_4(n))
-
Python
from math import gcd def A370824(n): return (a:=3**n-(1<
Chai Wah Wu, Mar 07 2024
Formula
Denominator of 2^(n-1)*(3^n-1)/(3^n-2^n). - Chai Wah Wu, Mar 07 2024
Comments