A370827 a(n) is the numerator of the ratio of winning probabilities P_A/P_B of winning in a 2-player game with a ratio of odds for A and B in a single round of 3:2. To win the game it is necessary to win n rounds in a row.
3, 63, 1053, 16443, 250533, 28431, 56859813, 853737003, 12811093893, 17472421953, 2883131020773, 25013333547, 648727335888453, 9730949220408843, 145964473398624933, 128792265384372219, 32842036136344638213, 3703989419737954191, 7389459197057088616293, 10076535434903231752353
Offset: 1
Examples
a(n)/A370828(n) for n = 1..8: 3/2, 63/32, 1053/392, 16443/4352, 250533/46112, 28431/3584, 56859813/4860032, 853737003/49160192.
Programs
-
PARI
a370827(n) = numerator((2/3) * (3/5)^n * ((5/2)^n - 1) / (1 - (3/5)^n))
-
Python
from math import gcd def A370827(n): return (a:=3**(n-1)*(5**n-(1<
Chai Wah Wu, Mar 12 2024
Formula
a(n)/A370828(n) = (2/3) * (3/5)^n * ((5/2)^n - 1) / (1 - (3/5)^n).
Comments