A370832 Triangle read by rows: T(n,k) gives the number of parking functions of size n with k lucky cars. 0 <= k <= n.
1, 0, 1, 0, 1, 2, 0, 2, 8, 6, 0, 6, 37, 58, 24, 0, 24, 204, 504, 444, 120, 0, 120, 1318, 4553, 6388, 3708, 720, 0, 720, 9792, 44176, 87296, 81136, 33984, 5040, 0, 5040, 82332, 463860, 1203921, 1582236, 1064124, 341136, 40320, 0, 40320, 773280, 5270480, 17164320, 29724000, 28328480, 14602320, 3733920, 362880
Offset: 0
Examples
Table begins: n\k| 0 1 2 3 4 5 6 7 8 ---+------------------------------------------------------------- 0 | 1 1 | 0 1 2 | 0 1 2 3 | 0 2 8 6 4 | 0 6 37 58 24 5 | 0 24 204 504 444 120 6 | 0 120 1318 4553 6388 3708 720 7 | 0 720 9792 44176 87296 81136 33984 5040 8 | 0 5040 82332 463860 1203921 1582236 1064124 341136 40320 ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Irfan Durmić, Alex Han, Pamela E. Harris, Rodrigo Ribeiro, and Mei Yin, Probabilistic Parking Functions, arXiv:2211.00536 [math.CO], 2022.
- FindStat, St000135: The number of lucky cars of the parking function.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand(x*mul((n+1-k)+k*x, k=2..n))) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Jun 26 2024
-
Mathematica
row[n_] := (x (x - 1)^n Pochhammer[(n + x) / (x - 1), n]) / (n + x); Table[CoefficientList[Series[row[n], {x, 0, n}], x], {n, 0, 8}] // Flatten (* Peter Luschny, Jun 27 2024 *)
Formula
T(n, n) = n!.
T(n, 1) = (n-1)!.
Sum_{k=1..n} T(n, k) = (n+1)^(n-1).
T(n+1, n) = A002538(n).
G.f. for row n>0: x * Product_{j=2..n} (n + 1 + j*(x-1)).
T(n, k) = [x^k] (x*(x - 1)^n*Pochhammer((n + x) / (x - 1), n)) / (n + x). - Peter Luschny, Jun 27 2024
Extensions
Edited by Alois P. Heinz, Jun 26 2024
Comments