cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370833 a(n) is the greatest prime dividing the n-th cubefree number, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 3, 5, 11, 3, 13, 7, 5, 17, 3, 19, 5, 7, 11, 23, 5, 13, 7, 29, 5, 31, 11, 17, 7, 3, 37, 19, 13, 41, 7, 43, 11, 5, 23, 47, 7, 5, 17, 13, 53, 11, 19, 29, 59, 5, 61, 31, 7, 13, 11, 67, 17, 23, 7, 71, 73, 37, 5, 19, 11, 13, 79, 41, 83, 7, 17, 43
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[AllTrue[f[[;; , 2]], # < 3 &], f[[-1, 1]], Nothing]]; Array[s, 200]
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmax(f[, 2]) < 3, print1(f[#f~, 1], ", ")));}
    
  • Python
    from sympy import mobius, integer_nthroot, primefactors
    def A370833(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return max(primefactors(m),default=1) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A006530(A004709(n)).
Sum_{A004709(n) <= x} a(n) = Sum_{i=1..k} d_i * x^2/log(x)^i + O(x^2/log(x)^(k+1)), for any given positive integer k, where d_i are constants, d_1 = 315/(4*Pi^4) = 0.808446... (De Koninck and Jakimczuk, 2024).

A370835 a(n) is the greatest prime dividing the n-th cubefull number, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 5, 2, 3, 3, 2, 7, 3, 2, 5, 3, 3, 3, 5, 2, 3, 11, 3, 3, 5, 2, 3, 13, 7, 3, 7, 5, 5, 3, 3, 5, 2, 17, 5, 3, 7, 3, 3, 19, 3, 3, 5, 2, 7, 5, 5, 3, 11, 7, 3, 23, 3, 11, 3, 5, 5, 2, 7, 5, 3, 13, 7, 3, 5, 3, 11, 7, 3, 29, 5, 5, 3, 7, 13, 31, 5, 3, 5
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[n == 1 || AllTrue[f[[;; , 2]], # > 2 &], f[[-1, 1]], Nothing]]; Array[s, 32000]
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 2, print1(f[#f~, 1], ", ")));}

Formula

a(n) = A006530(A036966(n)).
Sum_{A036966(n) <= x} a(n) = Sum_{i=1..k} e_i * x^(2/3)/log(x)^i + O(x^(2/3)/log(x)^(k+1)), for any given positive integer k, where e_i are constants, e_1 = (3/2) * Product_{p prime} (1 + Sum_{i>=3} 1/p^(2*i/3)) = 3.44968588450293915243... (De Koninck and Jakimczuk, 2024).
Showing 1-2 of 2 results.