cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370836 Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^2)) ).

Original entry on oeis.org

1, 1, 0, -2, -2, 6, 19, 1, -98, -170, 268, 1464, 967, -7253, -19035, 11497, 142894, 186814, -592148, -2327480, -371472, 14922592, 30367918, -44517534, -291059645, -242260229, 1550840094, 4611423196, -2050694753, -36095033685, -54276040088, 150373292998
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^2)))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n, 2*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k) * binomial(3*k,k)/(2*k+1).

A370837 Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^3)) ).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -15, -6, 57, 231, 501, 474, -1223, -7331, -19655, -27813, 19089, 248541, 819141, 1508316, 417165, -8314449, -34737603, -78646452, -71651147, 251348311, 1461221581, 3984339966, 5586567405, -5424531663, -59608307151, -196443394947
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^3)))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n, 3*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n,3*k) * binomial(4*k,k)/(3*k+1).
Showing 1-2 of 2 results.