A370874 Number of partitions of 4n whose xor-sum is 2n.
1, 2, 4, 16, 16, 65, 153, 411, 165, 437, 931, 2317, 4802, 10595, 21565, 43211, 5014, 10911, 22466, 44695, 83058, 156147, 286432, 516479, 595305, 1133892, 2111273, 3803940, 6731760, 11653790, 19886537, 33275225, 916662, 1593595, 2753582, 4676617, 7866137
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 2: 211, 31. a(2) = 4: 41111, 422, 5111, 62. a(3) = 16: 42111111, 422211, 4311111, 43221, 4332, 5211111, 52221, 531111, 5322, 6111111, 62211, 6321, 633, 711111, 7221, 732. a(4) = 16: 811111111, 8221111, 82222, 832111, 83311, 844, 91111111, 922111, 93211, 9331, (10)21111, (10)222, (10)3111, (11)2111, (11)311, (12)4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..511
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(i<1 or ilog2(k)>ilog2(i), 0, b(n, i-1, k)+ b(n-i, min(n-i,i), Bits[Xor](i, k)))) end: a:= n-> b(4*n$2, 2*n): seq(a(n), n=0..36);
Formula
a(n) = A050314(4n,2n).