A370884 Irregular triangle read by rows: T(n,k) is the number of unmatched left parentheses in the k-th string of parentheses of length n, where strings within a row are in reverse lexicographical order.
0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 1, 3, 1, 3, 3, 5, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 1, 1, 3, 0
Offset: 0
Examples
Triangle begins: [0] 0; [1] 0 1; [2] 0 1 0 2; [3] 0 1 0 2 0 1 1 3; [4] 0 1 0 2 0 1 1 3 0 1 0 2 0 2 2 4; ... The strings corresponding to row 2, in reverse lexicographical order, are: "))" (0 unmatched left parentheses), ")(" (1 unmatched left parenthesis), "()" (0 unmatched left parentheses), and "((" (2 unmatched left parentheses).
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, p. 459.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..16382 (rows 0..13 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
countL[s_] := StringCount[s, "1"] - StringCount[StringJoin[StringCases[s, RegularExpression["1(?R)*+0"]]], "1"]; Array[Map[countL, IntegerString[Range[0, 2^#-1], 2, #]] &, 7, 0]
Comments