cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371724 G.f. satisfies A(x) = ( 1 + x * A(x)^(1/3) * (1 + A(x)) )^(3/2).

Original entry on oeis.org

1, 3, 9, 31, 117, 468, 1949, 8361, 36693, 163956, 743388, 3411576, 15816609, 73967637, 348517539, 1652896367, 7884305829, 37800279504, 182055056428, 880410972156, 4273376488956, 20811901707192, 101666716335912, 498035242836144, 2446003588237193, 12041562653655453
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+3/2, n)/(n/3+k+1));

Formula

G.f.: B(x)^3 where B(x) is the g.f. of A106228.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+3/2,n)/(n/3+k+1).

A371723 G.f. satisfies A(x) = ( 1 + x * A(x)^(1/4) * (1 + A(x)^(5/4)) )^2.

Original entry on oeis.org

1, 4, 18, 100, 623, 4156, 29032, 209656, 1552535, 11724904, 89958000, 699213444, 5494103979, 43570067100, 348274269966, 2803139823512, 22698137859554, 184779492011244, 1511406790180350, 12415340284461312, 102377122022648745, 847144310799588732
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(n, k)*binomial(n/2+5*k/2+2, n)/(n/2+5*k/2+2));

Formula

G.f.: B(x)^4 where B(x) is the g.f. of A370472.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(n/2+5*k/2+2,n)/(n/2+5*k/2+2).
Showing 1-2 of 2 results.