cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370903 Partial alternating sums of the powerful part function (A057521).

Original entry on oeis.org

1, 0, 1, -3, -2, -3, -2, -10, -1, -2, -1, -5, -4, -5, -4, -20, -19, -28, -27, -31, -30, -31, -30, -38, -13, -14, 13, 9, 10, 9, 10, -22, -21, -22, -21, -57, -56, -57, -56, -64, -63, -64, -63, -67, -58, -59, -58, -74, -25, -50, -49, -53, -52, -79, -78, -86, -85
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[(-1)^(# + 1) * pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * pfp(k); print1(s, ", "))};

Formula

a(n) = c_1 * n^(3/2) + c_2 * n^(4/3) + O(n^(6/5)), where c_1 = (zeta(3/2)/(3*zeta(3))) * ((9-12*sqrt(2))/23) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))) = -0.40656281796860400941..., and c_2 = (zeta(4/3)/(4*zeta(2))) * ((2^(5/3)-3*2^(1/3)-1)/(2^(5/3)-2^(1/3)+1)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -0.52513876339565998938... (Tóth, 2017).