cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370902 Partial sums of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 7, 8, 9, 10, 18, 27, 28, 29, 33, 34, 35, 36, 52, 53, 62, 63, 67, 68, 69, 70, 78, 103, 104, 131, 135, 136, 137, 138, 170, 171, 172, 173, 209, 210, 211, 212, 220, 221, 222, 223, 227, 236, 237, 238, 254, 303, 328, 329, 333, 334, 361, 362, 370, 371, 372, 373
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} A057521(k).
a(n) = c_1 * n^(3/2) / 3 + c_2 * n^(4/3) / 4 + O(n^(6/5)), where c_1 = A328013 and c_2 are positive constants (Tóth, 2017).
c_2 = zeta(2/3) * Product_{p prime} (1 + 1/p^(4/3) - 2/p^2 - 1/p^(7/3) + 1/p^3) = -2.59305556147555965163... (László Tóth, personal communication). - Amiram Eldar, Mar 07 2024

A379583 Numerators of the partial sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 2, 3, 13, 17, 21, 25, 51, 467, 539, 611, 629, 701, 773, 845, 1699, 1843, 1859, 2003, 2039, 2183, 2327, 2471, 2489, 62369, 65969, 198307, 201007, 211807, 222607, 233407, 467489, 489089, 510689, 532289, 532889, 554489, 576089, 597689, 600389, 621989, 643589, 665189
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 13/4, 17/4, 21/4, 25/4, 51/8, 467/72, 539/72, 611/72, 629/72, ...
		

Crossrefs

Cf. A057521, A191622, A370902, A370903, A379584 (denominators), A379585.

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A057521(k)).
a(n)/A379584(n) = c * n + O(n^(1/2)), where c = A191622 (Cloutier et al., 2014). The error term was improved by Tóth (2017) to O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.

A379584 Denominators of the partial sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Crossrefs

Cf. A057521, A370902, A370903, A379583 (numerators), A379586.

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A057521(k)).

A379585 Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 0, 1, 3, 7, 3, 7, 13, 125, 53, 125, 107, 179, 107, 179, 349, 493, 53, 69, 65, 81, 65, 81, 79, 1991, 1591, 43357, 40657, 51457, 40657, 51457, 102239, 123839, 102239, 123839, 123239, 144839, 123239, 144839, 142139, 163739, 142139, 163739, 158339, 160739, 139139
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Examples

			Fractions begin with 1, 0, 1, 3/4, 7/4, 3/4, 7/4, 13/8, 125/72, 53/72, 125/72, 107/72, ...
		

Crossrefs

Cf. A057521, A191622, A370902, A370903, A379583, A379586 (denominators).

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).
a(n)/A379586(n) = (5/19) * A191622 * n + O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and with an improved error term O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.

A379586 Denominators of the partial alternating sums of the reciprocals of the powerful part function (A057521).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 16, 16, 16, 16, 16, 16, 16, 400, 400, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2024

Keywords

Crossrefs

Cf. A057521, A370902, A370903, A379584, A379585 (numerators).

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
  • PARI
    powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).
Showing 1-5 of 5 results.