A379584 Denominators of the partial sums of the reciprocals of the powerful part function (A057521).
1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Maurice-Étienne Cloutier, Les parties k-puissante et k-libre d'un nombre, Thèse de doctorat, Université Laval, Québec (2018).
- Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
Programs
-
Mathematica
f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
-
PARI
powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(denominator(s), ", "))};
Formula
a(n) = denominator(Sum_{k=1..n} 1/A057521(k)).