A370905 Partial sums of the alternating sum of divisors function (A206369).
1, 2, 4, 7, 11, 13, 19, 24, 31, 35, 45, 51, 63, 69, 77, 88, 104, 111, 129, 141, 153, 163, 185, 195, 216, 228, 248, 266, 294, 302, 332, 353, 373, 389, 413, 434, 470, 488, 512, 532, 572, 584, 626, 656, 684, 706, 752, 774, 817, 838, 870, 906, 958, 978, 1018, 1048
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, A survey of the alternating sum-of-divisors function, Acta Universitatis Sapientiae, Mathematica, Vol. 5, No. 1 (2013), pp. 93-107.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
Programs
-
Mathematica
f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[beta[#] &, 100]]
-
PARI
beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k));} lista(kmax) = {my(s = 0); for(k = 1, kmax, s += beta(k); print1(s, ", "))};
-
PARI
a(n) = sum(k=1, n, (-1)^bigomega(k) * (n\k) * (n\k+1))/2; \\ Daniel Suteu, May 11 2024
-
Python
from math import prod from sympy import factorint def A370905(n): return sum(prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(k).items()) for k in range(1,n+1)) # Chai Wah Wu, Mar 05 2024
Formula
a(n) = Sum_{k=1..n} A206369(k).
a(n) = (Pi^2/30) * n^2 + O(n * log(n)^(2/3) * log(log(n))^(4/3)) (Tóth, 2013).
a(n) = (1/2) * Sum_{k=1..n} A008836(k) * floor(n/k) * floor(n/k + 1). - Daniel Suteu, May 11 2024