A370933 Number of pairs of antipodal vertices in the level n>1 Sierpiński triangle graph.
6, 15, 42, 132, 456, 1680, 6432, 25152, 99456, 395520, 1577472, 6300672, 25184256, 100700160, 402726912, 1610760192, 6442745856, 25770393600, 103080394752, 412319219712, 1649272160256, 6597079203840, 26388297940992, 105553154015232, 422212540563456, 1688850011258880, 6755399743045632
Offset: 2
Examples
3 example graphs: o / \ o---o / \ / \ o o---o---o / \ / \ / \ o o---o o---o o---o / \ / \ / \ / \ / \ / \ / \ o---o o---o---o o---o---o---o---o Graph: S_1 S_2 S_3 For S_2, there are 3 pairs of corners and 3 pairs of a corner and a middle vertex, so a(2) = 6.
Links
- Paolo Xausa, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph
Crossrefs
Programs
-
Mathematica
A370933[n_] := 3*2^(n - 3)*(2^(n - 2) + 3); Array[A370933, 30, 2] (* or *) LinearRecurrence[{6, -8}, {6, 15}, 30] (* Paolo Xausa, Sep 23 2024 *)
-
PARI
a(n) = 3*2^(n-3)*(2^(n-2)+3); \\ Michel Marcus, Aug 08 2024
Extensions
More terms from Michel Marcus, Aug 08 2024
Comments