A370946 Number of partitions of [n] whose non-singleton elements sum to n.
1, 0, 0, 1, 1, 2, 3, 4, 5, 7, 12, 14, 20, 26, 36, 54, 68, 90, 120, 157, 202, 296, 360, 480, 612, 803, 1006, 1317, 1764, 2198, 2821, 3592, 4552, 5754, 7269, 9074, 11990, 14646, 18586, 23112, 29208, 35972, 45277, 55584, 69350, 87881, 107609, 133068, 165038
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(3) = 1: 12|3. a(4) = 1: 13|2|4. a(5) = 2: 1|23|4|5, 14|2|3|5. a(6) = 3: 123|4|5|6, 1|24|3|5|6, 15|2|3|4|6. a(7) = 4: 124|3|5|6|7, 1|2|34|5|6|7, 1|25|3|4|6|7, 16|2|3|4|5|7. a(8) = 5: 125|3|4|6|7|8, 134|2|5|6|7|8, 1|2|35|4|6|7|8, 1|26|3|4|5|7|8, 17|2|3|4|5|6|8. a(9) = 7: 126|3|4|5|7|8|9, 135|2|4|6|7|8|9, 1|234|5|6|7|8|9, 1|2|3|45|6|7|8|9, 1|2|36|4|5|7|8|9, 1|27|3|4|5|6|8|9, 18|2|3|4|5|6|7|9. a(10) = 12: 1234|5|6|7|8|9|10, 12|34|5|6|7|8|9|10, 127|3|4|5|6|8|9|10, 13|24|5|6|7|8|9|10, 136|2|4|5|7|8|9|10, 14|23|5|6|7|8|9|10, 1|235|4|6|7|8|9|10, 145|2|3|6|7|8|9|10, 1|2|3|46|5|7|8|9|10, 1|2|37|4|5|6|8|9|10, 1|28|3|4|5|6|7|9|10, 19|2|3|4|5|6|7|8|10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Wikipedia, Partition of a set
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 1, add(h(n-j)*binomial(n-1, j-1), j=2..n)) end: b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m+1))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..48);
-
Mathematica
h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]]; b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m + 1]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
Formula
a(n) = A370945(n,n*(n-1)/2).