cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370946 Number of partitions of [n] whose non-singleton elements sum to n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 5, 7, 12, 14, 20, 26, 36, 54, 68, 90, 120, 157, 202, 296, 360, 480, 612, 803, 1006, 1317, 1764, 2198, 2821, 3592, 4552, 5754, 7269, 9074, 11990, 14646, 18586, 23112, 29208, 35972, 45277, 55584, 69350, 87881, 107609, 133068, 165038
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(3) = 1: 12|3.
a(4) = 1: 13|2|4.
a(5) = 2: 1|23|4|5, 14|2|3|5.
a(6) = 3: 123|4|5|6, 1|24|3|5|6, 15|2|3|4|6.
a(7) = 4: 124|3|5|6|7, 1|2|34|5|6|7, 1|25|3|4|6|7, 16|2|3|4|5|7.
a(8) = 5: 125|3|4|6|7|8, 134|2|5|6|7|8, 1|2|35|4|6|7|8, 1|26|3|4|5|7|8, 17|2|3|4|5|6|8.
a(9) = 7: 126|3|4|5|7|8|9, 135|2|4|6|7|8|9, 1|234|5|6|7|8|9, 1|2|3|45|6|7|8|9, 1|2|36|4|5|7|8|9, 1|27|3|4|5|6|8|9, 18|2|3|4|5|6|7|9.
a(10) = 12: 1234|5|6|7|8|9|10, 12|34|5|6|7|8|9|10, 127|3|4|5|6|8|9|10, 13|24|5|6|7|8|9|10, 136|2|4|5|7|8|9|10, 14|23|5|6|7|8|9|10, 1|235|4|6|7|8|9|10, 145|2|3|6|7|8|9|10, 1|2|3|46|5|7|8|9|10, 1|2|37|4|5|6|8|9|10, 1|28|3|4|5|6|7|9|10, 19|2|3|4|5|6|7|8|10.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1,
          add(h(n-j)*binomial(n-1, j-1), j=2..n))
        end:
    b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..48);
  • Mathematica
    h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];
    b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m + 1]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)

Formula

a(n) = A370945(n,n*(n-1)/2).

A370947 Number of partitions of [n] whose singletons sum to n.

Original entry on oeis.org

1, 1, 0, 1, 2, 6, 20, 78, 307, 1486, 6974, 38584, 212268, 1321886, 8186322, 57015161, 391153290, 2976480926, 22534577137, 185638964675, 1522358748758, 13558705354828, 119620910388056, 1137343427864934, 10770667246889494, 108819371313460263, 1095389086585963202
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(3) = 1: 12|3.
a(4) = 2: 123|4, 1|24|3.
a(5) = 6: 1234|5, 12|34|5, 13|24|5, 14|23|5, 1|235|4, 145|2|3.
a(6) = 20: 12345|6, 123|45|6, 124|35|6, 125|34|6, 12|345|6, 134|25|6, 135|24|6, 13|245|6, 1356|2|4, 13|2|4|56, 145|23|6, 14|235|6, 15|234|6, 1|2346|5, 1|23|46|5, 1|24|36|5, 1|26|34|5, 15|2|36|4, 16|2|35|4, 1|2|3|456.
		

Crossrefs

Main diagonal of A370945.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1,
          add(h(n-j)*binomial(n-1, j-1), j=2..n))
        end:
    b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..26);
  • Mathematica
    h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];
    b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m - 1]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)

Formula

a(n) = A370945(n,n).
Showing 1-2 of 2 results.