A370947 Number of partitions of [n] whose singletons sum to n.
1, 1, 0, 1, 2, 6, 20, 78, 307, 1486, 6974, 38584, 212268, 1321886, 8186322, 57015161, 391153290, 2976480926, 22534577137, 185638964675, 1522358748758, 13558705354828, 119620910388056, 1137343427864934, 10770667246889494, 108819371313460263, 1095389086585963202
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(3) = 1: 12|3. a(4) = 2: 123|4, 1|24|3. a(5) = 6: 1234|5, 12|34|5, 13|24|5, 14|23|5, 1|235|4, 145|2|3. a(6) = 20: 12345|6, 123|45|6, 124|35|6, 125|34|6, 12|345|6, 134|25|6, 135|24|6, 13|245|6, 1356|2|4, 13|2|4|56, 145|23|6, 14|235|6, 15|234|6, 1|2346|5, 1|23|46|5, 1|24|36|5, 1|26|34|5, 15|2|36|4, 16|2|35|4, 1|2|3|456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..577
- Wikipedia, Partition of a set
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 1, add(h(n-j)*binomial(n-1, j-1), j=2..n)) end: b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1))) end: a:= n-> b(n$3): seq(a(n), n=0..26);
-
Mathematica
h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]]; b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m - 1]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
Formula
a(n) = A370945(n,n).