A370948 Triangle read by rows: T(n,k) is the number of labeled forests of rooted Greg hypertrees with n white vertices and weight k, 0 <= k < n.
1, 3, 1, 22, 15, 1, 262, 271, 53, 1, 4336, 6020, 2085, 165, 1, 91984, 160336, 81310, 13040, 487, 1, 2381408, 4996572, 3364011, 851690, 73024, 1407, 1, 72800928, 178613156, 150499951, 53119521, 7696794, 383649, 4041, 1
Offset: 1
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 ... 1 1; 2 3, 1; 3 22, 15, 1; 4 262, 271, 53, 1; 5 4336, 6020, 2085, 165, 1; ...
Links
- Paul Laubie, Hypertrees and embedding of the FMan operad, arXiv:2401.17439 [math.QA], 2024.
Crossrefs
Programs
-
PARI
T(n)={my(x='x+O('x^(n+1))); [Vecrev(p) | p <- Vec(serlaplace(serreverse( (log(1+y*x)/y - exp(x) + x + 1)*exp(-x) )))]} { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2024
Formula
E.g.f: series reversion in t of (log(1+v*t)/v - exp(t) + t + 1)*exp(-t), where the formal variable v encodes the weight.
T(n,0) = A005264(n).
T(n,n-1) = 1.
Comments