cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370948 Triangle read by rows: T(n,k) is the number of labeled forests of rooted Greg hypertrees with n white vertices and weight k, 0 <= k < n.

Original entry on oeis.org

1, 3, 1, 22, 15, 1, 262, 271, 53, 1, 4336, 6020, 2085, 165, 1, 91984, 160336, 81310, 13040, 487, 1, 2381408, 4996572, 3364011, 851690, 73024, 1407, 1, 72800928, 178613156, 150499951, 53119521, 7696794, 383649, 4041, 1
Offset: 1

Views

Author

Paul Laubie, Mar 06 2024

Keywords

Comments

A rooted Greg hypertree is a hypertree with black and white vertices such that white vertices are labeled, black vertices are unlabeled, and each black vertex has at least two children.
The weight of a forest of rooted Greg hypertrees is the number of hypertrees minus 1 plus the weight of each hyperedge which is the number of vertices it connects minus 2. See A364709 for the analog sequence for hypertrees. A forest of rooted Greg hypertrees of weight 0 is exactly a Greg tree.

Examples

			Triangle T(n,k) begins:
n\k    0     1     2     3     4 ...
1      1;
2      3,    1;
3     22,   15,    1;
4    262,  271,   53,    1;
5   4336, 6020, 2085,  165,    1;
...
		

Crossrefs

Cf. A364709, A005264 (k=0), A370949.
Row sums are A364816.
Series reversion as e.g.f. is related to A092271.

Programs

  • PARI
    T(n)={my(x='x+O('x^(n+1))); [Vecrev(p) | p <- Vec(serlaplace(serreverse( (log(1+y*x)/y - exp(x) + x + 1)*exp(-x) )))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2024

Formula

E.g.f: series reversion in t of (log(1+v*t)/v - exp(t) + t + 1)*exp(-t), where the formal variable v encodes the weight.
T(n,0) = A005264(n).
T(n,n-1) = 1.
Showing 1-1 of 1 results.