A370998 2*a(n) = m is the least even number m such that all sums m + prime(k), k=1..n are composite.
1, 3, 11, 44, 44, 56, 56, 101, 101, 101, 359, 359, 359, 664, 664, 821, 821, 821, 866, 866, 866, 2623, 2623, 2623, 2623, 2944, 2944, 2944, 2944, 2944, 2944, 2944, 2944, 2944, 5171, 5171, 12839, 18833, 18833, 18833, 18833, 29947, 29947, 29947, 38002, 38002, 38002, 38002, 51551
Offset: 1
Keywords
Examples
a(1) = 1: prime(1) = 2; 2 + 2*a(1) = 4 is the first composite. a(2) = 3: m = 6; since all sums prime(1) + 2*x are even, any x can be chosen. prime(2) = 3, 3 + 6 = 9, whereas 3 + 1*2 and 3 + 2*2 are prime. a(3) = 11: m = 22; for any even m < 22 at least one of 3 + m or 5 + m would be prime, e.g., 3+2=5, 3+4=7, 5+6=11, 3+8=11, 5+12=17, 5+14=19, 3+16=19, 5+18=23, 3+20=23, but 3+22=25 and 5+22 are composite.
Links
- Robert Israel, Table of n, a(n) for n = 1..273
Crossrefs
Cf. A239392 (records).
Programs
-
Maple
R:= 1: P:= [2]: r:= 1: for n from 2 to 100 do P:= [op(P), ithprime(n)]; for k from r while ormap(isprime,P +~ 2*k) do od: R:= R, k; r:= k; od: R; # Robert Israel, Mar 09 2025
-
Python
from itertools import count from sympy import prime, isprime def A370998(n): ptuple = tuple(prime(k) for k in range(1,n+1)) return next(filter(lambda m:not any(isprime(p+m) for p in ptuple),count(2,2)))>>1 # Chai Wah Wu, Mar 21 2024