cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371006 Expansion of e.g.f. (1/x) * Series_Reversion( x/(3*exp(x) - 2) ).

Original entry on oeis.org

1, 3, 21, 246, 4143, 91938, 2543457, 84476766, 3278575515, 145703001450, 7299102908613, 407061606983430, 25016221521245703, 1679926053870309378, 122399565517464024009, 9617404242454811783598, 810684382032520533507891, 72976185712308646408856538
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(3*exp(x)-2))/x))
    
  • PARI
    a(n) = sum(k=0, n+1, 3^k*(-2)^(n+1-k)*k^n*binomial(n+1, k))/(n+1);

Formula

a(n) = 1/(n+1) * Sum_{k=0..n+1} 3^k * (-2)^(n+1-k) * k^n * binomial(n+1,k).
a(n) = n! * Sum_{k=0..n} 3^k * Stirling2(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2024

A371009 Expansion of e.g.f. (1/x) * Series_Reversion( 2*x/(3 - exp(2*x)) ).

Original entry on oeis.org

1, -1, 0, 8, -16, -336, 2464, 30176, -572160, -3654400, 193852928, -29664768, -88869165056, 788014352384, 51013392617472, -1125131950034944, -33201578814668800, 1536045242886979584, 19518336239699623936, -2267097378027280924672
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(2*x/(3-exp(2*x)))/x))
    
  • PARI
    a(n) = sum(k=0, n+1, (-1)^k*3^(n+1-k)*k^n*binomial(n+1, k))/(2*(n+1));

Formula

a(n) = 1/(2*(n+1)) * Sum_{k=0..n+1} (-1)^k * 3^(n+1-k) * k^n * binomial(n+1,k).
a(n) = n! * Sum_{k=0..n} (-1)^k * 2^(n-k) * Stirling2(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2024
Showing 1-2 of 2 results.