cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371182 Lexicographically earliest strictly increasing sequence of positive integers in which every triple of consecutive digits contains only one pair that is not coprime.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 21, 22, 32, 33, 42, 52, 54, 55, 62, 72, 74, 76, 77, 82, 92, 93, 100, 102, 103, 104, 105, 106, 107, 108, 109, 130, 133, 136, 139, 160, 162, 163, 164, 166, 168, 169, 190, 193, 196, 199, 221, 223, 225, 227, 229, 232, 233, 234, 238, 239, 241, 243, 245
Offset: 1

Views

Author

Ivan N. Ianakiev, Mar 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    pairwiseQ[a_,b_,c_]:=Sort[{CoprimeQ[a,b],CoprimeQ[b,c],CoprimeQ[a,c]}]=={False,True,True}; a[1]=1;a[2]=2;a[3]=4;a[4]=5;a[5]=6;a[6]=8;a[7]=10;
    a[n_]:=a[n]=Module[{k=a[n-1]+1,digits},
    While[digits=Join[Take[IntegerDigits[a[n-1]],-2],IntegerDigits[k]];
    Union[ pairwiseQ@@@Table[{digits[[i]],digits[[i+1]],digits[[i+2]]},
    {i,1,Length[digits]-2}]]!={True},k++];k]; a/@Range[60]

A371183 Lexicographically earliest sequence of distinct terms in which every triple of consecutive digits contains only one pair that is not coprime.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 22, 5, 6, 21, 20, 10, 7, 17, 71, 70, 12, 23, 24, 14, 25, 26, 13, 31, 30, 15, 51, 50, 16, 27, 28, 18, 29, 32, 33, 19, 34, 38, 39, 42, 52, 41, 40, 100, 102, 103, 104, 105, 106, 107, 108, 109, 130, 120, 122, 54, 43, 35, 36, 53, 37, 62, 55, 44, 56, 45, 46, 58, 47, 48
Offset: 1

Views

Author

Ivan N. Ianakiev, Mar 14 2024

Keywords

Crossrefs

Programs

  • Mathematica
    pairwiseQ[a_,b_,c_]:=Sort[{CoprimeQ[a,b],CoprimeQ[b,c],CoprimeQ[a,c]}]=={False,True,True}; a[1]=1;a[2]=2;a[3]=4;
    a[n_]:=a[n]=Module[{k=1,digits,tab=Table[a[i],{i,1,n-1}]},
    While[digits=Join[Take[Flatten[IntegerDigits[Take[tab,-3]]],-3],IntegerDigits[k]];
    MemberQ[tab,k]||Union[pairwiseQ@@@
    Table[{digits[[i]],digits[[i+1]],digits[[i+2]]},
    {i,1,Length[digits]-2}]]!={True},k++];k]; a/@Range[70]
Showing 1-2 of 2 results.