A371070 a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.
1, 0, 0, 1, 1, 1, 3, 2, 3, 6, 5, 7, 12, 10, 16, 19, 21, 26, 34, 37, 44, 56, 60, 67, 93, 92, 111, 137, 140, 166, 192, 211, 246, 279, 306, 333, 392, 428, 464, 538, 565, 627, 709, 768, 826, 939, 998, 1089, 1230, 1312, 1403, 1590, 1658, 1798, 1987, 2088, 2266, 2495
Offset: 6
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 6..200
- Hugo Pfoertner, Plot of ratio a(n)/A208454(n), using Plot 2. Is the asymptotic ratio for n->oo finite or 0?
Programs
-
PARI
a371070(n) = {my (L=List()); forpart (w=n, forperm (w,v, if(v[4]+v[5]
0, listput (L,CM))), [1,n], [6,6]); #Set(Vec(L))}; -
Python
from collections import Counter from sympy.utilities.iterables import partitions, multiset_permutations def A371070(n): CM = lambda x,y,z,t,u,v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2 TR1 = lambda x,y,z: not(x+y
0 and M not in d: d.add(M) c += 1 return c # Chai Wah Wu, Mar 23 2024
Formula
a(n) <= A208454(n).