cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371070 a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 3, 6, 5, 7, 12, 10, 16, 19, 21, 26, 34, 37, 44, 56, 60, 67, 93, 92, 111, 137, 140, 166, 192, 211, 246, 279, 306, 333, 392, 428, 464, 538, 565, 627, 709, 768, 826, 939, 998, 1089, 1230, 1312, 1403, 1590, 1658, 1798, 1987, 2088, 2266, 2495
Offset: 6

Views

Author

Hugo Pfoertner, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a371070(n) = {my (L=List()); forpart (w=n, forperm (w,v, if(v[4]+v[5]0, listput (L,CM))), [1,n], [6,6]); #Set(Vec(L))};
    
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    def A371070(n):
        CM = lambda x,y,z,t,u,v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2
        TR1 = lambda x,y,z: not(x+y0 and M not in d:
                        d.add(M)
                        c += 1
        return c # Chai Wah Wu, Mar 23 2024

Formula

a(n) <= A208454(n).

A371344 a(n)/144 is the minimum squared volume > 0 of a tetrahedron with integer edge lengths whose largest is n.

Original entry on oeis.org

2, 11, 26, 47, 54, 107, 146, 191, 242, 299, 191, 134, 146, 146, 151, 767, 423, 151, 854, 558, 764, 491, 503, 464, 146, 146, 431, 944, 666, 146, 146, 350, 599, 311, 599, 511, 1719, 2286, 944, 1871, 1679, 990, 2714, 1907, 990, 551, 959, 1199, 1244, 990, 1206, 854, 764
Offset: 1

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Examples

			a(1) = 2 corresponds to the regular tetrahedron with all edges equal to 1. Its volume is sqrt(2/144) = 0.11785113...
		

Crossrefs

Subset of A371071.
A001014(n)/72 are the corresponding maximum squared volumes.

Programs

  • PARI
    \\ See A371345. Replace final #Set(Vec(L)) by vecmin(Vec(L))/2
    \\ Second version using simple minded loops and triangle inequalities
    \\ Not suitable for larger n
    a371344(n) = {my (Vmin=oo,w=vector(6)); w[1]=n; for(w2=1,n,w[2]=w2; for(w3=1,n,w[3]=w3; for(w4=1,n,w[4]=w4; for(w5=1,n,w[5]=w5; for(w6=1,n,w[6]=w6;
    forperm (w, v, if(v[4]+v[5]0, Vmin=min(Vmin,CM)))))))); Vmin/2}; \\ return value corrected by M. F. Hasler, Dec 02 2024
    
  • PARI
    /* equivalent to the preceding, but simplified */
    A371344(n) = {my (Vmin=oo,CM, n2=n^2); forvec(v=vector(5,k,[1,n]), v[4]+v[5]= Vmin || Vmin=CM); Vmin/2} \\ M. F. Hasler, Dec 02 2024

Extensions

a(33), a(37), a(38), and a(43) corrected by Hugo Pfoertner, Dec 03 2024

A371072 a(n)/144 is the minimum squared volume > 0 of a tetrahedron with the sum of its integer edge lengths equal to n.

Original entry on oeis.org

11, 14, 44, 26, 59, 34, 47, 126, 119, 62, 215, 54, 107, 98, 243, 146, 335, 142, 191, 614, 479, 194, 764, 423, 299, 254, 1004, 239, 851, 322, 304, 783, 887, 134, 479, 1719, 315, 234, 1196, 191, 896, 574, 767, 1127, 151, 674, 956, 956, 671, 146, 1391, 1082, 791, 898, 263, 1184, 151
Offset: 9

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Comments

a(6) = 2, but since there are no tetrahedra with volume > 0 for n=7 and n=8, the offset 9 is chosen.

Crossrefs

Programs

  • PARI
    a371072(n) = {my (Vmin=oo); forpart (w=n, forperm (w, v, if(v[4]+v[5]0, Vmin=min(Vmin,CM))), [1, n], [6, 6]); Vmin/2};

A371073 a(n)/144 is the maximum squared volume of a tetrahedron with the sum of its integer edge lengths equal to n.

Original entry on oeis.org

11, 14, 44, 128, 108, 188, 368, 448, 828, 1458, 1584, 2151, 3159, 3824, 5616, 8192, 9200, 11504, 15104, 17975, 23600, 31250, 35100, 41975, 51875, 60444, 74700, 93312, 104076, 120924, 143856, 164591, 195804, 235298, 260288, 296303, 343343, 387008, 448448, 524288
Offset: 9

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Examples

			a(12) = 128 corresponds to the regular tetrahedron with all edges equal to 2. Its volume is V=sqrt(2)*2^3/12; V^2 = 2*2^6/12^2 = 128/144.
		

Crossrefs

Showing 1-4 of 4 results.