A371073 a(n)/144 is the maximum squared volume of a tetrahedron with the sum of its integer edge lengths equal to n.
11, 14, 44, 128, 108, 188, 368, 448, 828, 1458, 1584, 2151, 3159, 3824, 5616, 8192, 9200, 11504, 15104, 17975, 23600, 31250, 35100, 41975, 51875, 60444, 74700, 93312, 104076, 120924, 143856, 164591, 195804, 235298, 260288, 296303, 343343, 387008, 448448, 524288
Offset: 9
Keywords
Examples
a(12) = 128 corresponds to the regular tetrahedron with all edges equal to 2. Its volume is V=sqrt(2)*2^3/12; V^2 = 2*2^6/12^2 = 128/144.