cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371076 Triangle read by rows: T(n, k) = 3^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j) * Pochhammer(j/3, n).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 28, 24, 6, 0, 280, 320, 144, 24, 0, 3640, 5040, 3120, 960, 120, 0, 58240, 92960, 71280, 30720, 7200, 720, 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040, 0, 24344320, 47653760, 48545280, 31127040, 13104000, 3548160, 564480, 40320
Offset: 0

Views

Author

Peter Luschny, Mar 10 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,       1;
[2] 0,       4,       2;
[3] 0,      28,      24,       6;
[4] 0,     280,     320,     144,     24;
[5] 0,    3640,    5040,    3120,    960,    120;
[6] 0,   58240,   92960,   71280,  30720,   7200,   720;
[7] 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040;
		

Crossrefs

Cf. A371077, A007559 (column 1), A000142 (main diagonal), A052609 (subdiagonal).

Programs

  • Maple
    A371076 := (n, k) -> local j; 3^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/3, n), j = 0..k): seq(seq(A371076(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) = k * T(n-1, k-1) + (3*n - 3 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 13 2024