A371080 Triangle read by rows: BellMatrix(Product_{p in P(n)} p), where P(n) = {k : k mod m = 1 and 1 <= k <= m*(n + 1)} and m = 3.
1, 0, 1, 0, 4, 1, 0, 28, 12, 1, 0, 280, 160, 24, 1, 0, 3640, 2520, 520, 40, 1, 0, 58240, 46480, 11880, 1280, 60, 1, 0, 1106560, 987840, 295960, 40040, 2660, 84, 1, 0, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 4, 1; [3] 0, 28, 12, 1; [4] 0, 280, 160, 24, 1; [5] 0, 3640, 2520, 520, 40, 1; [6] 0, 58240, 46480, 11880, 1280, 60, 1; [7] 0, 1106560, 987840, 295960, 40040, 2660, 84, 1;
Links
- Peter Luschny, The Bell transform.
Crossrefs
Programs
-
Maple
a := n -> mul(select(k -> k mod 3 = 1, [seq(1..3*(n + 1))])): BellMatrix(a, 9); # Alternative: BellMatrix(n -> coeff(series((1/x)*hypergeom([1, 1/3], [], 3*x),x, 22), x, n), 9); # Recurrence: T := proc(n, k) option remember; if k = n then 1 elif k = 0 then 0 else T(n - 1, k - 1) + (3*(n - 1) + k) * T(n - 1, k) fi end: for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Mar 13 2024
-
PARI
T(n, k) = sum(j=k, n, 3^(n-j)*abs(stirling(n, j, 1))*stirling(j, k, 2)); \\ Seiichi Manyama, Apr 19 2025
Formula
T(n, k) = BellMatrix([x^n] hypergeom2F0([1, 1/3], [], 3*x) / x).
T(n, k) = A371076(n, k) / k!.
From Werner Schulte, Mar 13 2024: (Start)
T(n, k) = (Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * Product_{j=0..n-1} (3*j + i)) / (k!).
T(n, k) = T(n-1, k-1) + (3*(n - 1) + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0. (End)
From Seiichi Manyama, Apr 19 2025: (Start)
T(n,k) = Sum_{j=k..n} 3^(n-j) * |Stirling1(n,j)| * Stirling2(j,k).
E.g.f. of column k (with leading zeros): (1/(1 - 3*x)^(1/3) - 1)^k / k!. (End)