cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364286 Composite numbers k for which A324644(k)/A324198(k) = 2.

Original entry on oeis.org

33, 51, 69, 91, 99, 135, 141, 145, 153, 159, 187, 207, 213, 217, 285, 295, 303, 321, 339, 391, 411, 423, 427, 435, 445, 477, 507, 519, 573, 637, 639, 679, 681, 699, 771, 783, 799, 843, 855, 861, 885, 895, 901, 909, 933, 951, 963, 1017, 1041, 1057, 1059, 1071, 1081, 1083, 1147, 1149, 1173, 1185, 1195, 1203, 1207
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2023

Keywords

Comments

See comments in A351458.
All terms are odd. Of the 63 initial terms of A349169, only term 13923 occurs also in this sequence. The first common term with A332458 is 161257. - Antti Karttunen, Mar 10 2024

Crossrefs

Subsequence of A082686.

Programs

  • Mathematica
    f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[1350], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* Michael De Vlieger, Mar 10 2024 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA364286(n) = if(isprime(n), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u))); \\ Antti Karttunen, Mar 10 2024

A387164 Numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)), and that satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

117, 153, 333, 369, 425, 477, 549, 637, 657, 845, 873, 909, 925, 1017, 1053, 1233, 1325, 1377, 1413, 1421, 1445, 1525, 1557, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2097, 2169, 2225, 2313, 2493, 2525, 2529, 2597, 2637, 2725, 2817, 2825, 2853, 2989, 2997, 3033, 3177, 3321, 3357, 3425, 3509, 3573, 3577, 3609, 3725
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2025

Keywords

Comments

Terms k of A228058 for which A322361(k) = A342671(k), or equally, such that A319626(k) = A349164(k).

Crossrefs

Intersection of A228058 and A349174.
Union of A387166 and A387167.
Differs from its subsequence A387167 for the first time at n=201, where a(201) = 14157, while A387167(201) = 14225.
Cf. also A371082.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA349174(n) = if(!(n%2), 0, my(u=A003961(n)); gcd(u, sigma(n))==gcd(u, n));
    isA387164(n) = (isA228058(n) && isA349174(n));

A387165 Nondeficient numbers k for which A324644(k)/A324198(k) = 2.

Original entry on oeis.org

38745, 77805, 78435, 118755, 141075, 157815, 210735, 237195, 241605, 294975, 300105, 323505, 364455, 371925, 390195, 409185, 455715, 475335, 499905, 567945, 607635, 660825, 701415, 733005, 766395, 806085, 809325, 872235, 885465, 891135, 937755, 964845, 978705, 1101555, 1150065, 1201095, 1229445, 1265355, 1293705
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2025

Keywords

Comments

First three nonmultiples of 5 occur at a(138), a(276), a(356) = 4446981, 8909901, 11234223. (Cf. A005231, A064001).

Crossrefs

Intersection of A023196 and A364286.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    is_A387165(n) = if(sigma(n)<2*n, 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u)));

Formula

{k | sigma(k) >= 2*k, A324644(k) = 2*A324198(k)}.
Showing 1-3 of 3 results.