cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371090 Additive with a(p^1) = 1, a(p^e) = a(A276086(e)) for e > 1, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 3, 3, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2024

Keywords

Comments

Used to construct A371091.

Crossrefs

Differs from A064547 for the first time at n=63, where a(64) = 1, while A064547(64) = 2.
Differs from A058061 for the first time at n=128, where a(128) = 2, while A058061(128) = 3.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A371090(n) = vecsum(apply(e->if(1==e,1,A371090(A276086(e))),factor(n)[, 2]));

Formula

Additive with a(p^1) = 1, a(p^e) = A371091(e) for e > 1.
For all n >= 1, A001221(n) <= a(n) <= A001222(n).