A371092 a(n) = floor((A000265(3*n+1)+5)/6), where A000265 gives the odd part of its argument.
1, 1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 3, 7, 1, 8, 4, 9, 3, 10, 5, 11, 1, 12, 6, 13, 4, 14, 7, 15, 2, 16, 8, 17, 5, 18, 9, 19, 2, 20, 10, 21, 6, 22, 11, 23, 3, 24, 12, 25, 7, 26, 13, 27, 1, 28, 14, 29, 8, 30, 15, 31, 4, 32, 16, 33, 9, 34, 17, 35, 3, 36, 18, 37, 10, 38, 19, 39, 5, 40, 20, 41, 11, 42, 21, 43, 1, 44, 22, 45, 12
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Programs
-
Maple
with(padic): A37109 := n -> floor(1/6*(3*n + 1)/2^ordp(3*n + 1, 2) + 5/6); seq(A37109(n), n = 0 .. 89); # Miles Wilson, Oct 10 2024
-
Mathematica
A371092[n_] := With[{k = 3*n + 1}, Floor[(k/2^IntegerExponent[k, 2] + 5)/6]]; Array[A371092, 100, 0] (* Paolo Xausa, Apr 20 2024 *)
-
PARI
A000265(n) = (n>>valuation(n,2)); A371092(n) = floor((A000265(1+(3*n))+5)/6);
Formula
a(n) = a(4*n + 1) = a(16*n + 5) = a(64*n + 21) = ... = a(4^k * n + ((4^k)-1)/3).
Comments