cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371115 E.g.f. satisfies A(x) = 1 + x*(exp(x*A(x)) - 1).

Original entry on oeis.org

1, 0, 2, 3, 28, 185, 1566, 18277, 218744, 3206961, 52134490, 935303501, 18733723812, 406458491881, 9598660337462, 244471271572725, 6671672053304176, 194631575264393057, 6036199529439919410, 198427339307102272669, 6892068588221322730460
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 - x - ProductLog[-E^((1 - x)*x)*x^2]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, stirling(n-k, k, 2)/(n-2*k+1)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,k)/(n-2*k+1)!.
From Vaclav Kotesovec, Mar 11 2024: (Start)
E.g.f.: 1 - x - LambertW(-exp((1 - x)*x)*x^2)/x.
a(n) ~ sqrt(2 + r - 2*r^2) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.5356007344755967412570670018666980389185523835846... if the root of the equation exp(1 + r - r^2) * r^2 = 1. (End)

A371118 E.g.f. satisfies A(x) = 1 - x^2*log(1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 6, 12, 40, 900, 8568, 80640, 1170720, 19625760, 335079360, 6259524480, 132897697920, 3078950434560, 75934287475200, 2010354982272000, 57241482249369600, 1735591000023336960, 55694476130213652480, 1889613850762113638400
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(n-3*k+1)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,k)|/(n-3*k+1)!.
Showing 1-2 of 2 results.