A371121
E.g.f. satisfies A(x) = 1 - x*A(x)*log(1 - x*A(x)).
Original entry on oeis.org
1, 0, 2, 3, 56, 330, 5724, 68460, 1351552, 24594192, 578257200, 13915923120, 389216689344, 11518744311360, 377576873670528, 13185760854520800, 497969104450867200, 19992393239486976000, 856421361373185137664, 38819358713756193292800
Offset: 0
-
a(n) = n!^2*sum(k=0, n\2, abs(stirling(n-k, k, 1))/((n-k)!*(n-k+1)!));
A371139
E.g.f. satisfies A(x) = 1 + x^2*A(x)^2*(exp(x*A(x)) - 1).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 2190, 17682, 94136, 4762872, 83210490, 920248670, 34266719652, 948535937076, 17568958623398, 607198057666410, 22018456385103600, 595499717140604912, 21682086461493768306, 926586132659265073590, 33197900968981072951580
Offset: 0
-
a(n) = n!^2*sum(k=0, n\3, stirling(n-2*k, k, 2)/((n-2*k)!*(n-k+1)!));
A371120
E.g.f. satisfies A(x) = 1 + x*A(x)^3*(exp(x*A(x)) - 1).
Original entry on oeis.org
1, 0, 2, 3, 100, 545, 17946, 203497, 7194440, 132963777, 5172409630, 135827977241, 5868623306844, 200952952956769, 9665278822378466, 407661518051710665, 21789972653746494736, 1088515671895571005313, 64406426353877958253254
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n+2*k)!*stirling(n-k, k, 2)/((n-k)!*(n+k+1)!));
A376293
E.g.f. satisfies A(x) = 1 + (x*A(x))^3 * (exp(x*A(x)) - 1).
Original entry on oeis.org
1, 0, 0, 0, 24, 60, 120, 210, 161616, 1633464, 10584720, 54886590, 10785520680, 243865703796, 3309354530664, 34340235932730, 3229131046905120, 123251776925401200, 2846181122195004576, 49221175229381943414, 3060186440577720774840
Offset: 0
-
a(n) = n!^2*sum(k=0, n\4, stirling(n-3*k, k, 2)/((n-3*k)!*(n-k+1)!));
A377392
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*(exp(x) - 1))^2 ).
Original entry on oeis.org
1, 0, 4, 6, 224, 1330, 42912, 548114, 18337440, 382829346, 14098368080, 413342914402, 17124811116624, 644015140354898, 30163665817167456, 1375047846420311730, 72583022771706823232, 3866142693873431519554, 228486372085027819754928, 13871056133441358772777154
Offset: 0
-
a(n) = 2*n!*(2*n+1)!*sum(k=0, n\2, stirling(n-k, k, 2)/((n-k)!*(2*n-k+2)!));
A377393
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*(exp(x) - 1))^3 ).
Original entry on oeis.org
1, 0, 6, 9, 516, 3075, 149418, 1956171, 95139432, 2099836899, 108189172830, 3465051871083, 194015893087404, 8207832658120563, 505114926236953074, 26525536061251639275, 1800555184934893332048, 112493970299385975997635, 8415880480577316204054630
Offset: 0
-
a(n) = 3*n!*(3*n+2)!*sum(k=0, n\2, stirling(n-k, k, 2)/((n-k)!*(3*n-k+3)!));
Showing 1-6 of 6 results.