cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371132 Number of integer partitions of n with fewer distinct parts than distinct divisors of parts.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 6, 10, 14, 21, 28, 40, 53, 73, 96, 130, 170, 223, 288, 375, 480, 616, 780, 990, 1245, 1567, 1954, 2440, 3024, 3745, 4610, 5674, 6947, 8499, 10349, 12591, 15258, 18468, 22277, 26841, 32238, 38673, 46262, 55278, 65881, 78423, 93136, 110477
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A371179.

Examples

			The partition (4,3,1,1) has 3 distinct parts {1,3,4} and 4 distinct divisors of parts {1,2,3,4}, so is counted under a(9).
The a(0) = 0 through a(9) = 14 partitions:
  .  .  (2)  (3)  (4)   (5)   (6)    (7)     (8)      (9)
                  (22)  (32)  (33)   (43)    (44)     (54)
                        (41)  (42)   (52)    (53)     (63)
                              (222)  (61)    (62)     (72)
                              (411)  (322)   (332)    (81)
                                     (4111)  (422)    (333)
                                             (431)    (432)
                                             (611)    (441)
                                             (2222)   (522)
                                             (41111)  (621)
                                                      (3222)
                                                      (4311)
                                                      (6111)
                                                      (411111)
		

Crossrefs

The LHS is represented by A001221, distinct case of A001222.
The RHS is represented by A370820, for prime factors A303975.
The complement counting all parts on the LHS is A371172, ranks A371165.
Counting all parts on the LHS gives A371173, ranks A371168.
The complement is counted by A371178, ranks A371177.
These partitions are ranked by A371179.
The strict case is A371180, complement A371128.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]] < Length[Union@@Divisors/@#]&]],{n,0,30}]