cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371142 E.g.f. satisfies A(x) = 1 + x*A(x)^2 * (exp(x) - 1).

Original entry on oeis.org

1, 0, 2, 3, 52, 245, 4446, 40327, 823432, 11539593, 269030530, 5151458411, 137198342700, 3328477618765, 100753779655270, 2948537330575215, 100684293424304656, 3437897124964763921, 131334298073705194506, 5110990692709364143219, 216634434142329948020020
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - Sqrt[1 + 4*x - 4*E^x*x]) / (2*(-x + E^x*x)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(2/(1+sqrt(1-4*x*(exp(x)-1)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (2*k)!/(k+1)!*stirling(n-k, k, 2)/(n-k)!);

Formula

E.g.f.: 2/(1 + sqrt(1-4*x*(exp(x)-1))).
a(n) = n! * Sum_{k=0..floor(n/2)} (2*k)!/(k+1)! * Stirling2(n-k,k)/(n-k)!.
a(n) ~ sqrt(2 + 2*r + 8*r^2) * n^(n-1) / (exp(n) * r^n), where r = 0.4454633431717774246390371283449007888959504623839... is the positive real root of the equation 4*r*(exp(r) - 1) = 1. - Vaclav Kotesovec, Mar 12 2024

A377720 E.g.f. satisfies A(x) = (1 + x * (exp(x) - 1) * A(x))^3.

Original entry on oeis.org

1, 0, 6, 9, 300, 1455, 44658, 430941, 13821048, 213210171, 7400153550, 160981385433, 6126989357844, 173482562393751, 7273217782923498, 253885773923800245, 11726322434886352368, 485729504795911017075, 24658741688798553168582, 1179026561203600147075857
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*n!*sum(k=0, n\2, (3*k+2)!*stirling(n-k, k, 2)/((n-k)!*(2*k+3)!));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A371143.
a(n) = 3 * n! * Sum_{k=0..floor(n/2)} (3*k+2)! * Stirling2(n-k,k)/( (n-k)! * (2*k+3)! ).
Showing 1-2 of 2 results.