A371178 Number of integer partitions of n containing all divisors of all parts.
1, 1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 37, 48, 62, 80, 101, 127, 162, 202, 252, 312, 386, 475, 585, 713, 869, 1056, 1278, 1541, 1859, 2232, 2675, 3196, 3811, 4534, 5386, 6379, 7547, 8908, 10497, 12345, 14501, 16999, 19897, 23253, 27135, 31618, 36796, 42756
Offset: 0
Keywords
Examples
The partition (4,2,1,1) contains all distinct divisors {1,2,4}, so is counted under a(8). The partition (4,4,3,2,2,2,1) contains all distinct divisors {1,2,3,4} so is counted under 4 + 4 + 3 + 2 + 2 + 2 + 1 = 18. - _David A. Corneth_, Mar 18 2024 The a(0) = 1 through a(8) = 12 partitions: () (1) (11) (21) (31) (221) (51) (331) (71) (111) (211) (311) (321) (421) (521) (1111) (2111) (2211) (511) (3221) (11111) (3111) (2221) (3311) (21111) (3211) (4211) (111111) (22111) (5111) (31111) (22211) (211111) (32111) (1111111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],SubsetQ[#,Union@@Divisors/@#]&]],{n,0,30}]
Comments