cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328845 The first Fibonacci based variant of arithmetic derivative: a(p) = A000045(p) for prime p, a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 13, 12, 12, 15, 89, 20, 233, 33, 25, 32, 1597, 33, 4181, 40, 53, 189, 28657, 52, 50, 479, 54, 80, 514229, 65, 1346269, 80, 289, 3211, 100, 84, 24157817, 8381, 725, 100, 165580141, 127, 433494437, 400, 105, 57337, 2971215073, 128, 182, 125, 4825, 984, 53316291173, 135, 500, 188, 12581, 1028487, 956722026041, 160
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. A374046 (indices of even terms), A374047 (of odd terms), A374122 (of multiples of 3), A374202 (2-adic valuation), A374203 (3-adic valuation), A374205 (5-adic valuation), A374125 [a(n) mod 360].
Cf. A374106 [gcd(a(n), A113177(n))], A374035 [gcd(a(n), A328846(n))], A374116 [gcd(a(n), A328768(n))].
For variants of the same formula, see A003415, A258851, A328768, A328769, A328846, A371192.

Programs

  • Mathematica
    A328845[n_] := If[n <= 1, 0, n*Total[MapApply[#2*Fibonacci[#]/# &, FactorInteger[n]]]];
    Array[A328845, 100, 0] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));

Formula

a(n) = n * Sum e_j * A000045(p_j)/p_j for n = Product p_j^e_j.
a(A000040(n)) = A030426(n).
A007895(a(n)) = A328847(n).

A328768 The first primorial based variant of arithmetic derivative: a(prime(i)) = A002110(i-1), where prime(i) = A000040(i), a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 7, 30, 12, 12, 17, 210, 20, 2310, 67, 28, 32, 30030, 33, 510510, 44, 104, 431, 9699690, 52, 60, 4633, 54, 148, 223092870, 71, 6469693230, 80, 652, 60077, 192, 84, 200560490130, 1021039, 6956, 108, 7420738134810, 229, 304250263527210, 884, 114, 19399403, 13082761331670030, 128, 420, 145, 90124, 9292, 614889782588491410, 135, 1116, 324
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. A042965 (indices of even terms), A016825 (of odd terms), A152822 (antiparity of terms), A373992 (indices of multiples of 3), A374212 (2-adic valuation), A374213 (3-adic valuation), A374123 [a(n) mod 360].
Cf. A374031 [gcd(a(n), A276085(n))], A374116 [gcd(a(n), A328845(n))].
For variants of the same formula, see A003415, A258851, A328769, A328845, A328846, A371192.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    
  • PARI
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1]))/(f[i, 1]^2)));

Formula

a(n) = n * Sum e_j * A276085(p_j)/p_j for n = Product p_j^e_j, where for primes p, A276085(p) = A002110(A000720(p)-1).
a(n) = n * Sum e_j * (p_j)#/(p_j^2) for n = Product p_j^e_j with (p_j)# = A034386(p_j).
For all n >= 0, A276150(a(n)) = A328771(n).

A328846 The second Fibonacci based variant of arithmetic derivative: a(p) = A000045(2+A000720(p)) for prime p, a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0. Also called PrimePi-Fibonacci variant of the arithmetic derivative.

Original entry on oeis.org

0, 0, 2, 3, 8, 5, 12, 8, 24, 18, 20, 13, 36, 21, 30, 30, 64, 34, 54, 55, 60, 45, 48, 89, 96, 50, 68, 81, 88, 144, 90, 233, 160, 72, 102, 75, 144, 377, 148, 102, 160, 610, 132, 987, 140, 135, 224, 1597, 240, 112, 150, 153, 188, 2584, 216, 120, 232, 222, 346, 4181, 240, 6765, 528, 198, 384, 170, 210, 10946, 272, 336, 220, 17711, 360
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. also A003415, A258851, A328768, A328769, A328845 for other arithmetic derivatives, and also A371192 for another PrimePi-Fibonacci variant.
Cf. A374035 [= gcd(a(n), A328845(n))], A374048 (antiparity of this sequence), A374049 (indices of even terms), A374050 (of odd terms).

Programs

  • PARI
    A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1]));

Formula

a(n) = n * Sum e_j * A000045(2+A000720(p_j))/p_j for n = Product p_j^e_j.
a(A000040(n)) = A000045(2+n).
A007895(a(n)) = A328848(n).
Showing 1-3 of 3 results.