A371197
Expansion of e.g.f. 1/(1 + x^2 * log(1 - x - x^2)).
Original entry on oeis.org
1, 0, 0, 6, 36, 160, 1980, 26208, 319200, 4587840, 79117920, 1455410880, 28807099200, 626767165440, 14748882115968, 370481625360000, 9936445454208000, 283810433412280320, 8586642168981642240, 274263310453720412160, 9227500416766453248000
Offset: 0
-
a(n) = n!*sum(j=0, n, sum(k=0, j\2, k!*binomial(j-k, n-j-k)*abs(stirling(j-k, k, 1))/(j-k)!));
A371198
Expansion of e.g.f. 1/(1 + x^3 * log(1 - x - x^2)).
Original entry on oeis.org
1, 0, 0, 0, 24, 180, 960, 8820, 129024, 2177280, 32875200, 533887200, 9997827840, 212133841920, 4799669696640, 114208231737600, 2901190960926720, 79007705121945600, 2289453730357248000, 69972073047194572800, 2249392810263651532800
Offset: 0
-
a(n) = n!*sum(j=0, n, sum(k=0, j\3, k!*binomial(j-2*k, n-j-k)*abs(stirling(j-2*k, k, 1))/(j-2*k)!));
A371199
Expansion of e.g.f. 1/(1 + x * log(1 - x^2 - x^3)).
Original entry on oeis.org
1, 0, 0, 6, 24, 60, 1440, 14280, 120960, 1905120, 29937600, 433762560, 7823692800, 155675520000, 3117592558080, 68545488211200, 1640346727219200, 40864533405696000, 1079108655290265600, 30355641777517056000, 894726263032842240000
Offset: 0
-
a(n) = n!*sum(j=0, n\2, sum(k=0, j, k!*binomial(j, n-2*j-k)*abs(stirling(j, k, 1))/j!));
A371200
Expansion of e.g.f. 1/(1 + x * log(1 - x^3 - x^4)).
Original entry on oeis.org
1, 0, 0, 0, 24, 120, 0, 2520, 80640, 907200, 4838400, 79833600, 2395008000, 40994553600, 515804889600, 10025503488000, 286642221465600, 6669139276800000, 133382785536000000, 3254006435936256000, 98762305409703936000, 2851300331032817664000
Offset: 0
-
a(n) = n!*sum(j=0, n\3, sum(k=0, j, k!*binomial(j, n-3*j-k)*abs(stirling(j, k, 1))/j!));
A371225
Expansion of e.g.f. 1/(1 - x * log(1 + x + x^2)).
Original entry on oeis.org
1, 0, 2, 3, 8, 150, 84, 5040, 39808, 72576, 5598000, 19617840, 392747904, 9837828000, 23366133504, 2120992080480, 23679285857280, 236064853301760, 13280228754130944, 79239777198727680, 3793985724604769280, 97004042539092541440, 781106411330024693760
Offset: 0
-
a(n) = n!*sum(j=0, n, sum(k=0, j, k!*binomial(j, n-j-k)*stirling(j, k, 1)/j!));
A371226
Expansion of e.g.f. 1/(1 - x * (exp(x + x^2) - 1)).
Original entry on oeis.org
1, 0, 2, 9, 52, 485, 4506, 53137, 699336, 10350153, 171116470, 3099723341, 61365024876, 1315416053965, 30365930429394, 751142777311305, 19817598092077456, 555552329932290449, 16489894938382046574, 516644525863694081413, 17038964994820269425460
Offset: 0
-
a(n) = n!*sum(j=0, n, sum(k=0, j, k!*binomial(j, n-j-k)*stirling(j, k, 2)/j!));
Showing 1-6 of 6 results.