A371217 The maximum deck size to perform Colm Mulcahy's n-card trick.
1, 4, 15, 52, 197, 896, 4987, 33216, 257161, 2262124, 22241671, 241476060, 2867551117, 36960108680, 513753523571, 7659705147976, 121918431264273, 2063255678027668, 36991535865656959, 700377953116334788, 13963866589144933461, 292421219327021540176, 6417047546280200867819
Offset: 1
Keywords
Examples
Suppose the deck consists of 4 cards (1,2,3,4), and the assistant gets two cards. If the two cards contain 4, the assistant hides 4 and signals it with the other card face down. If there is no 4, then the cards are a and a+1 modulo 3. The assistant hides a+1, and signals it with a.
References
- Wallace Lee, Math Miracles, published by Seeman Printery, Durham, N.C., 1950.
- Colm Mulcahy, Mathematical card magic: fifty-two new effects, published by CRC press, 2013.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 10.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, n*(n^2-2*n+2), ((11*n^2-66*n-61)*a(n-1) -(17*n^2-155*n+134)*a(n-2) +(n-3)*(n-81)*a(n-3) +(n-4)*(5*n+26)*a(n-4))/(11*n-72)) end: seq(a(n), n=1..23); # Alois P. Heinz, Mar 18 2024
-
Mathematica
Table[1 + (k - 1)(2 Sum[Binomial[k - 1, i] (i - 1)!, {i, 1, k - 1}] + 1), {k, 20}]
-
Python
from math import factorial def A371217(n): return n+((n-1)*sum(factorial(n-1)//((i+1)*factorial(n-i-2)) for i in range(n-1))<<1) # Chai Wah Wu, May 02 2024
Formula
a(n) = 1 + (n-1)*(1 + 2*Sum_{i=1..n-1} (i-1)!*binomial(n-1, i)).
a(n) mod 2 = n mod 2 = A000035(n). - Alois P. Heinz, Mar 22 2024
a(n) ~ 2*exp(1)*(n-1)!. - Vaclav Kotesovec, Jul 27 2024
Comments