A371238 Euler totient function applied to the binary palindromes of even length.
2, 6, 8, 20, 24, 32, 36, 84, 96, 80, 108, 96, 144, 120, 128, 324, 320, 288, 420, 336, 360, 476, 384, 512, 432, 560, 540, 504, 632, 480, 600, 1364, 960, 1344, 1296, 1536, 1440, 1296, 1584, 1296, 1772, 1512, 1280, 1760, 1440, 1980, 1800, 1600, 1800, 2016, 1536, 1872
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- William D. Banks and Igor E. Shparlinski, Average value of the Euler function on binary palindromes, Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 54, No. 2 (2006), pp. 95-101; alternative link.
Programs
-
Mathematica
EulerPhi[Select[Range[5000], EvenQ[Length[(d = IntegerDigits[#, 2])]] && PalindromeQ[d] &]]
-
PARI
is(n) = Vecrev(n = binary(n)) == n && !((#n)%2); lista(kmax) = for(k = 1, kmax, if(is(k), print1(eulerphi(k), ", ")));