cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371238 Euler totient function applied to the binary palindromes of even length.

Original entry on oeis.org

2, 6, 8, 20, 24, 32, 36, 84, 96, 80, 108, 96, 144, 120, 128, 324, 320, 288, 420, 336, 360, 476, 384, 512, 432, 560, 540, 504, 632, 480, 600, 1364, 960, 1344, 1296, 1536, 1440, 1296, 1584, 1296, 1772, 1512, 1280, 1760, 1440, 1980, 1800, 1600, 1800, 2016, 1536, 1872
Offset: 1

Views

Author

Amiram Eldar, Mar 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[5000], EvenQ[Length[(d = IntegerDigits[#, 2])]] && PalindromeQ[d] &]]
  • PARI
    is(n) = Vecrev(n = binary(n)) == n && !((#n)%2);
    lista(kmax) = for(k = 1, kmax, if(is(k), print1(eulerphi(k), ", ")));

Formula

a(n) = A000010(A048701(n)).
(1/N(k)) * Sum_{j, A070939(A048701(j)) = 2*k} a(j) = 3 * 2^(2*k-2) * (6/Pi^2 + O((k/log(k))^(-1/4))), where N(k) = Sum_{j, A070939(A048701(j)) = 2*k} 1 (Banks and Shparlinski, 2006).