A371262
E.g.f. satisfies A(x) = 1 + x * (exp(x*A(x)^2) - 1).
Original entry on oeis.org
1, 0, 2, 3, 52, 365, 5286, 76867, 1341320, 27823833, 624467530, 16163482511, 452003629452, 13975370745349, 467133121195118, 16865722845267675, 653859200911607056, 27061461284541490097, 1192488605596282310802, 55686113074253206544167
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*n-2*k)!*stirling(n-k, k, 2)/((n-k)!*(2*n-3*k+1)!));
A371270
E.g.f. satisfies A(x) = 1 + x*A(x)^2 * (exp(x*A(x)^2) - 1).
Original entry on oeis.org
1, 0, 2, 3, 100, 605, 18366, 238147, 7688584, 162016857, 5839673410, 172051422191, 7034104918380, 265080848463301, 12311587474831750, 561485310426413115, 29475848282815342096, 1569372890780660724401, 92402629467727290784650
Offset: 0
-
a(n) = n!*(2*n)!*sum(k=0, n\2, stirling(n-k, k, 2)/((n-k)!*(2*n-k+1)!));
A371269
E.g.f. satisfies A(x) = 1 + x*A(x) * (exp(x*A(x)^2) - 1).
Original entry on oeis.org
1, 0, 2, 3, 76, 485, 10746, 146167, 3552312, 75642345, 2150551990, 61400333291, 2061654862356, 72804918721405, 2858153637295698, 119363732105632575, 5395737275060765296, 259270058379207421649, 13294348104095211012462, 721446934706871966578899
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*n-k)!*stirling(n-k, k, 2)/((n-k)!*(2*n-2*k+1)!));
A371273
E.g.f. satisfies A(x) = 1 + x*A(x)^4 * (exp(x*A(x)^3) - 1).
Original entry on oeis.org
1, 0, 2, 3, 172, 1025, 54606, 710017, 38964024, 855167553, 49992166090, 1603665906161, 101454726848388, 4342187407054081, 299554876119595110, 16084216120063348545, 1213404824364026124016, 78279943651487041769345, 6456915976418046368634402
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (3*n+k)!*stirling(n-k, k, 2)/(n-k)!)/(3*n+1)!;
A376381
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*(exp(x) - 1))^2 ).
Original entry on oeis.org
1, 0, 4, 6, 272, 1570, 63912, 792554, 33262784, 684763650, 30981768680, 915838324522, 45524048263872, 1765020653500130, 97096528136899592, 4651295721203951850, 283478019364268181632, 16107548441248677913858, 1084981357752210351649512, 71056829948555342150405354, 5267564532376249471978526720
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*(exp(x)-1))^2)/x))
-
a(n) = 2*n!*sum(k=0, n\2, (2*n+k+1)!*stirling(n-k, k, 2)/(n-k)!)/(2*n+2)!;
Showing 1-5 of 5 results.