A371285 Heinz number of the multiset union of the divisor sets of each prime index of n.
1, 2, 6, 4, 10, 12, 42, 8, 36, 20, 22, 24, 390, 84, 60, 16, 34, 72, 798, 40, 252, 44, 230, 48, 100, 780, 216, 168, 1914, 120, 62, 32, 132, 68, 420, 144, 101010, 1596, 2340, 80, 82, 504, 4386, 88, 360, 460, 5170, 96, 1764, 200, 204, 1560, 42294, 432, 220, 336
Offset: 1
Examples
The prime indices of 105 are {2,3,4}, with divisor sets {{1,2},{1,3},{1,2,4}}, with multiset union {1,1,1,2,2,3,4}, with Heinz number 2520, so a(105) = 2520. The terms together with their prime indices begin: 1: {} 2: {1} 6: {1,2} 4: {1,1} 10: {1,3} 12: {1,1,2} 42: {1,2,4} 8: {1,1,1} 36: {1,1,2,2} 20: {1,1,3} 22: {1,5} 24: {1,1,1,2} 390: {1,2,3,6} 84: {1,1,2,4} 60: {1,1,2,3} 16: {1,1,1,1} 34: {1,7} 72: {1,1,1,2,2}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Times@@Prime/@Join@@Divisors/@prix[n],{n,100}]
Comments