A371286 Products of elements of A275700 (Heinz numbers of divisor sets). Numbers with a (necessarily unique) factorization into elements of A275700.
1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 60, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 118, 120, 124, 128, 132, 134, 136, 144, 160, 164, 166, 168, 176, 192, 200, 204, 216, 218, 220, 230, 236, 240, 248, 252, 254, 256, 264, 268, 272, 288
Offset: 1
Keywords
Examples
The terms together with their prime factorizations and unique factorizations into terms of A275700 begin: 1 = = () 2 = 2 = (2) 4 = 2*2 = (2*2) 6 = 2*3 = (6) 8 = 2*2*2 = (2*2*2) 10 = 2*5 = (10) 12 = 2*2*3 = (2*6) 16 = 2*2*2*2 = (2*2*2*2) 20 = 2*2*5 = (2*10) 22 = 2*11 = (22) 24 = 2*2*2*3 = (2*2*6) 32 = 2*2*2*2*2 = (2*2*2*2*2) 34 = 2*17 = (34) 36 = 2*2*3*3 = (6*6) 40 = 2*2*2*5 = (2*2*10) 42 = 2*3*7 = (42) 44 = 2*2*11 = (2*22) 48 = 2*2*2*2*3 = (2*2*2*6) 60 = 2*2*3*5 = (6*10) 62 = 2*31 = (62) 64 = 2*2*2*2*2*2 = (2*2*2*2*2*2) 68 = 2*2*17 = (2*34) 72 = 2*2*2*3*3 = (2*6*6) 80 = 2*2*2*2*5 = (2*2*2*10) 82 = 2*41 = (82) 84 = 2*2*3*7 = (2*42) 88 = 2*2*2*11 = (2*2*22) 96 = 2*2*2*2*2*3 = (2*2*2*2*6)
Crossrefs
Programs
-
Mathematica
nn=100; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1, {{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; s=Table[Times@@Prime/@Divisors[n],{n,nn}]; m=Max@@Table[Select[Range[2,k],prix[#] == Divisors[Last[prix[#]]]&],{k,nn}]; Join@@Position[Table[Length[Select[facs[n], SubsetQ[s,Union[#]]&]],{n,m}],1]
Comments