A371288 Numbers whose distinct prime indices form the set of divisors of some positive integer.
2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 50, 54, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 108, 118, 124, 126, 128, 134, 136, 144, 160, 162, 164, 166, 168, 176, 192, 200, 216, 218, 230, 236, 242, 248, 250, 252, 254, 256, 268, 272, 288
Offset: 1
Keywords
Examples
The prime indices of 694782 are {1,2,2,5,5,5,10} with distinct elements {1,2,5,10}, which form the set of divisors of 10, so 694782 is in the sequence. The terms together with their prime indices begin: 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 10: {1,3} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 22: {1,5} 24: {1,1,1,2} 32: {1,1,1,1,1} 34: {1,7} 36: {1,1,2,2} 40: {1,1,1,3} 42: {1,2,4} 44: {1,1,5} 48: {1,1,1,1,2}
Links
- Joseph Likar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Union[prix[#]]==Divisors[Max@@prix[#]]&]
Comments