cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371290 Numbers whose product of binary indices is a prime power > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 64, 65, 128, 129, 130, 131, 136, 137, 138, 139, 256, 257, 260, 261, 1024, 1025, 4096, 4097, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 65536, 65537, 262144
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                   1 ~ {1}
       2:                  10 ~ {2}
       3:                  11 ~ {1,2}
       4:                 100 ~ {3}
       5:                 101 ~ {1,3}
       8:                1000 ~ {4}
       9:                1001 ~ {1,4}
      10:                1010 ~ {2,4}
      11:                1011 ~ {1,2,4}
      16:               10000 ~ {5}
      17:               10001 ~ {1,5}
      64:             1000000 ~ {7}
      65:             1000001 ~ {1,7}
     128:            10000000 ~ {8}
     129:            10000001 ~ {1,8}
     130:            10000010 ~ {2,8}
     131:            10000011 ~ {1,2,8}
     136:            10001000 ~ {4,8}
     137:            10001001 ~ {1,4,8}
     138:            10001010 ~ {2,4,8}
     139:            10001011 ~ {1,2,4,8}
     256:           100000000 ~ {9}
     257:           100000001 ~ {1,9}
     260:           100000100 ~ {3,9}
     261:           100000101 ~ {1,3,9}
    1024:         10000000000 ~ {11}
    1025:         10000000001 ~ {1,11}
    4096:       1000000000000 ~ {13}
    4097:       1000000000001 ~ {1,13}
   32768:    1000000000000000 ~ {16}
		

Crossrefs

For powers of 2 we have A253317.
For prime indices we have A320698.
For squarefree numbers instead of prime powers we have A371289.
A000040 lists prime numbers.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],#==1||PrimePowerQ[Times@@bpe[#]]&]