A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.
1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1
Keywords
Examples
The terms together with their prime indices of binary indices begin: 1: {{}} 2: {{1}} 3: {{},{1}} 6: {{1},{2}} 7: {{},{1},{2}} 22: {{1},{2},{3}} 23: {{},{1},{2},{3}} 32: {{1,2}} 33: {{},{1,2}} 48: {{3},{1,2}} 49: {{},{3},{1,2}} 86: {{1},{2},{3},{4}} 87: {{},{1},{2},{3},{4}} 112: {{3},{1,2},{4}} 113: {{},{3},{1,2},{4}} 516: {{2},{1,3}} 517: {{},{2},{1,3}} 580: {{2},{4},{1,3}} 581: {{},{2},{4},{1,3}}
Crossrefs
Without the covering condition we have A371289.
Without squarefree product we have A371292.
Interchanging binary and prime indices gives A371448.
A005117 lists squarefree numbers.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A326701 lists BII-numbers of set partitions.
Programs
-
Mathematica
normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]
Comments